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Background on Nonlinear Prediction

Goal: Predict Y from random vector X.

Best Prediction: The mean of Y |X? Minimizes mean square error (MSE)
between Y and all functions of X.

Gaussian Case: E[Y |X] is linear in X.

Linear Case: A linear minimizer of MSE depends on means and covariances
of (Y,X), i.e., first and second moments.



Background on Nonlinear Prediction

When would a nonlinear predictor give lower MSE?

• A non-Gaussian (Y,X)? Maybe; for some non-Gaussian the linear
predictor is still best.

• Conjecture: when there’s some skewness and/or kurtosis.



Background on Nonlinear Prediction

Thesis: This paper focuses on quadratic predictors in the context of time
series forecasting. We provide a general approach involving auto-cumulants
(of order 1, 2, 3, and 4).

Other Literature: Try to find “universal predictor” by truncating the
Volterra expansion. Tsay (1986), Krolzig and Hendry (2001), Castle and
Hendry (2010), Teräsvirta et al. (2010), Kock and Teräsvirta (2011).

What’s New: A general framework (not based on particular models, or just
on forecasting); a classification of processes for which quadratic prediction
is helpful; new “quadratic” processes.



The Quadratic Problem

Wlog (Y,X) is mean zero. The quadratic problem seeks to minimize

E
[
(Y − g(X))

2
]
,

where
g(X) = b′X +X ′BX − E

[
X ′BX

]
and the matrix B is (weakly) lower-triangular.



The Quadratic Problem

Recall the linear predictor is

Ŷ (1) = ΣY,X Σ−1X,XX.



The Quadratic Problem

Using
X ′BX = tr{XX ′B} = vec[B]

′ vec[XX ′]

and replacing vec by (weak) vech, we obtain

g(X) = β′ {X − E[X ]},

where X ′ = [X ′, vech[XX ′]
′
] and β′ = [b′, vech[B]

′
].



The Quadratic Problem

Let M = Cov[X ], i.e.,

M =

[
ΣX,X Σ

X,vech[XX′]

Σvech[XX′],X Σvech[XX′],vech[XX′]

]
.

Suppose that both ΣX,X and the Schur complement

S = Σvech[XX′],vech[XX′] − Σvech[XX′],X Σ−1X,X Σ
X,vech[XX′]

are invertible.



The Quadratic Problem

The solution to the quadratic problem is

β̂ =

[
Σ−1X,X ΣX,Y − Σ−1X,X Σ

X,vech[XX′] S
−1 Σvech[XX′],Ê(1)

S−1 Σvech[XX′],Ê(1)

]
,

where Ê(1) = Y − Ŷ (1) and

Σvech[XX′],Ê(1) = Σvech[XX′],Y − Σvech[XX′],X Σ−1X,X ΣX,Y .



The Quadratic Problem

Remark: Quadratic reduces to linear iff Σvech[XX′],Ê(1) = 0. This

condition involves third moments.

Re-expression:

Ŷ (2) = Ŷ (1)

+ Σ
Ê(1),vech[XX′] S

−1
[
vech[XX ′]− Σvech[XX′],X Σ−1X,XX

]
.



The Quadratic Problem

Minimal MSE: The MSE at this optimum is

ΣY,Y − ΣY,X Σ−1X,X ΣX,Y − Σ
Ê(1),vech[XX′] S

−1 Σvech[XX′],Ê(1).

Therefore the efficiency loss of using a linear estimator when a quadratic is
warranted is the non-negative quantity

Σ
Ê(1),vech[XX′] S

−1 Σvech[XX′],Ê(1).



Theory for Quadratic Processes

Now let X ′ = [X1, X2, . . . , XT ] be a length T sample from a strictly
stationary univariate time series {Xt}.

Auto-cumulants: If {Xt} has moments of all orders, then the auto-
cumulant functions κ of order k + 1 (for k ≥ 1) are defined via

κ(h) = cum[Xt+h1, Xt+h2, . . . , Xt+hk, Xt],

where h = [h1, h2, . . . , hk]
′ is a k-vector of lags.



Theory for Quadratic Processes

Wlog E[Xt] = 0, and define the auto-moment functions γ of order k + 1
via

γ(h) = E[Xt+h1Xt+h2 . . . Xt+hkXt].

For k = 1, 2 we have κ = γ, but for k ≥ 3 the auto-cumulant and
auto-moment functions are different.



Theory for Quadratic Processes

Assume auto-cumulant functions are absolutely summable over h ∈ Zk.
Then the polyspectral density of order k + 1 is given by

f(λ) =
∑
h∈Zk

κ(h) exp{−i λ′h},

where λ = [λ1, . . . , λk]
′ denotes a k-vector of frequencies.



Theory for Quadratic Processes

Polyspectra for Linear Processes: If Xt = Ψ(B)Zt, where Ψ(z) is a
power series such that Ψ(0) = 1, and {Zt} is i.i.d. (with kth cumulant µk),
we say the process {Xt} is linear. In such a case the polyspectra of order
k + 1 is given by

f(λ) = µk+1

k∏
j=1

Ψ(e−iλj) Ψ(ei
∑k
j=1 λj).



Theory for Quadratic Processes

For nonlinear processes, we can (under conditions, see Tekalp and Erdem
(1989)) factor the polyspectra: for each k ≥ 1 there exists a constant µk+1

and power series Ψk+1(z) such that Ψk+1(0) = 1 and

f(λ) = µk+1

k∏
j=1

Ψk+1(e
−iλj) Ψk+1(e

i
∑k
j=1 λj).

Remark: For a linear process Ψk+1 = Ψ for all k ≥ 1, and µk corresponds
to the kth cumulant of Zt.



Theory for Quadratic Processes

Definition of Quadratic Process: There is some MSE gain to using a
quadratic predictor over a linear predictor (based on an infinite past).

Theorem 1. Let {Xt} be strictly stationary with fourth moments, and
absolutely summable auto-cumulants of order 2, 3, 4. Suppose that µ3 6= 0,
and the polyspectra of order 2 and 3 can be factored into the form

f(λ) = µk+1

k∏
j=1

Ψk+1(e
−iλj) Ψk+1(e

i
∑k
j=1 λj),

yielding Ψ2 and Ψ3. Then {Xt} is a quadratic process if and only if
Ψ3(z) 6= Ψ2(z) for some z ∈ C.



Theory for Quadratic Processes

Implications: Given some stationary process with known parameters

1. Compute auto-cumulants (analytically or by Monte Carlo)

2. Compute polyspectra for each k

3. Factorize polyspectra (algorithm in paper) to obtain Ψk(z) and µk

4. Check whether Ψ3(z) 6= Ψ2(z)



Illustrations of Quadratic Processes

ARCH and GARCH: Suppose

Xt = σtZt

σ2
t = α0 +

p∑
j=1

αjX
2
t−j +

q∑
j=1

βj σ
2
t−j.

It is known to be a white noise, i.e., µ2 = 0 and Ψ2(z) ≡ 1.



Illustrations of Quadratic Processes

ARCH and GARCH: Set ω(x) =
∑p
j=1αj x

j and θ(x) = 1−
∑q
j=1 βj x

j.
With π(z) = 1− ω(z)/θ(z), the bi-spectrum (k = 2) is

f(λ) = E[X3]
(
π(yz)

−1
+ π(y)

−1
+ π(z)

−1 − 2
)
,

where y = e−iλ1 and z = e−iλ2. Hence GARCH is a quadratic process
when E[X3] 6= 0 and π(z) is non-trivial.

Open Problem: Compute tri-spectrum!



Illustrations of Quadratic Processes

Hermite Processes: Let {Zt} be a mean zero, stationary Gaussian with
autocovariance c(h) such that c(0) = 1. The Hermite polynomials are
defined for k ≥ 1 (H0 ≡ 1) as

Hk(x) =
(−1)

k

√
k!

ex
2/2 ∂kxe

−x2/2.

For a sequence of coefficients {Jk}k≥1 that are square summable, let

h(x) =
∑∞
k=1 JkHk(x) and define a Hermite process via Xt = h(Zt).



Illustrations of Quadratic Processes

Hermite Lognormal: Let h(x) = ex− ec(0)/2, so that {Xt} is a lognormal
process. The auto-moments (with µ = ec(0)/2) are

γ(k1) = µ
2
(exp{c(k1)} − 1)

γ(k1, k2) = µ
3

(exp{c(k1) + c(k2) + c(k3)} − exp{c(k1)} − exp{c(k2)} − exp{c(k3)}+ 2)

γ(k1, k2, k3) = µ
4

(exp{c(k1) + c(k2) + c(k3) + c(k1 − k2) + c(k1 − k3) + c(k2 − k3)}

− exp{c(k1 − k2) + c(k1 − k3) + c(k2 − k3)} − exp{c(k2) + c(k3) + c(k2 − k3)}

− exp{c(k1) + c(k3) + c(k1 − k3)} − exp{c(k1) + c(k2) + c(k1 − k2)}

+exp{c(k2 − k3)}+ exp{c(k1 − k3)}+ exp{c(k1 − k2)}

+exp{c(k3)}+ exp{c(k2)}+ exp{c(k1)} − 3.)

Verify: Show this is a quadratic process when {Zt} is a moving average.



Illustrations of Quadratic Processes

Hermite Quadratic: Say only J1 and J2 are non-zero, so that the process
is expressed as

Xt = J1H1(Zt) + J2H2(Zt) = J1Zt + J2Z
2
t − J2.

If we divide through by J2, we obtain a rescaled process of the form
αH1(Zt) +H2(Zt), for α = J1/J2. The auto-moments are given in terms
of α (complicated).



Illustrations of Quadratic Processes

Numerical Example: Suppose

(1− 2ρ cos(ω)B + ρ2B2)Zt = εt ∼WN(0, σ2),

with ρ = .99, ω = π/6, and σ = .1, a Gaussian process. Consider the
Hermite Quadratic process: set Jk = 0 for k > 2, J2 = 1, and J1 = α = 2.
This results in a strong pattern of cyclical persistence.

Prediction Results: With a sample of size T = 5 we compute the linear
and quadratic MSE, obtaining .154 and .124 respectively, so that inclusion
of the quadratic estimation results in a 19.6 % reduction in MSE.



Conclusion

Key Advances:

• Formulation and solution of quadratic prediction problem: relies on third
and fourth cumulants.

• Conditions derived under which quadratic is better than linear.

• Algorithms to compute and factor polyspectra.

• New classes of processes, including Hermite Quadratic.
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